Acute wounds normally proceed through an orderly and timely sequence of events involving hemostasis, inflammation, proliferation, and remodeling that ultimately results in the restoration of nearly normal anatomic and functional integrity. Chronic wounds are wounds which have failed at some point to proceed through this orderly sequence and demonstrate arrested healing in one of these stages.

There are many factors which may cause the conversion of an acute wound to a chronic, non-healing wound. Principle among them are: (1) infection, (2) ischemia and tissue hypoxia, (3) inadequate local wound stimulus or responsiveness, and (4) unrelieved pressure or repetitive mechanical injury. Important risk factors for poor wound healing include tobacco use, diabetes mellitus, foreign bodies, and underlying vascular disease. Tissue hypoxia plays an important role in many non-healing wounds by reducing the effectiveness of the host response to infection and by impeding the processes of angiogenesis and fibroblast replication and collagen deposition. Thus, correction of tissue hypoxia becomes an important aspect of the management of many non-healing wounds.

As shown in the figure, hyperbaric oxygen treatment increases the dissolved oxygen content in blood plasma and the diffusion distance for oxygen into tissues. This produces a number of physiological benefits to the wounded host including:

- Correction of tissue hypoxia in partially ischemic, infected, or irradiated tissue
- Stimulation and support of fibroblast replication and collagen synthesis and angiogenesis
- Reduction of local tissue edema by local alteration in blood flow while oxygen delivery is increased by the greater diffusion of oxygen into the tissues
- Enhancement of leukocyte killing of microorganisms, improved antibiotic function, and direct toxic effects on anaerobic organisms

When combined with appropriate conventional wound care such as surgical debridement, antibiotics, edema control, and pressure relief, many previously non-healing wounds can be successfully managed.

Tissue salvage in crushing injury, compartment syndrome or other acute traumatic ischémias is enhanced because of the edema relief and greatly increased oxygen delivery to compromised tissue.
Wounds associated with *clostridial myonecrosis*, necrotizing soft tissue infections, and refractory osteomyelitis are improved and survival increased because of the reduction of toxin production, improved ability of leukocytes to respond to local infection, and enhanced antibiotic function.

Wounds occurring in the setting of previous radiation exposure develop increased angiogenesis and microvascularity following hyperbaric oxygen treatment restoring nearly normal resting tissue pO2’s and allowing surgical reconstruction or healing to proceed more normally.

Diabetic patients present a particular challenge in wound management because of the multifactorial etiology of their poor wound healing. Many diabetic wounds are profoundly hypoxic with poor host response to local infection. Adjunctive hyperbaric oxygen treatment can in many cases correct the tissue hypoxia, improve leukocyte and antibiotic function, and stimulate the development of granulation tissue and subsequent healing when combined with an aggressive program of conventional wound care and pressure relief.

Adjunctive hyperbaric oxygen treatment cannot improve healing in all problem wounds. However, those demonstrating reversible local tissue hypoxia and poor response to local infection will frequently be significantly improved by the addition of hyperbaric oxygen treatment when applied in a system of aggressive local wound care, appropriate antibiotics, and control of systemic host factors which contribute to poor wound healing.

References:

Patients should be referred to comprehensive wound healing centers for aggressive, outcome based wound management. Wound healing centers that are designed to compliment the attending physician’s services by providing expert wound management consultation and care including the application of advanced wound care technology and hyperbaric oxygen treatment as indicated based on a comprehensive system of evidence based clinical practice guidelines will provide their patients with the best outcomes possible. The referring physician will continue to treat comorbid conditions and provide for the patient’s overall medical care. Hyperbaric oxygen treatment should be available specifically for the treatment of soft tissue radionecrosis, osteoradionecrosis, osteomyelitis, clostridial myonecrosis and other necrotizing soft tissue infections, compromised skin grafts and flaps, crush injuries and other acute traumatic ischemias, and diabetic wounds of the lower extremities. All etiologies of wound healing failure are accepted for evaluation and care.

Types of wounds treated include Diabetic, Venous Stasis, Ischemic, Pressure, Traumatic, Surgical and other wounds that resist healing.

Problem wound patients should be referred to the Center when:

- The wound has failed to show significant progress in 4 weeks of standard care
- When the wound involves deep tissue structures or is limb or life threatening
- When the wound is complicated by significant comorbidities including peripheral vascular disease, persistent edema, persistent infection, prior radiation treatment to the area, or compromised immune status of the patient

Special Acknowledgement:

Written by:
Robert A Warriner, III, M.D., FACA, FCCP
Chief Medical Officer, Diversified Clinical Services

Sechrist Industries, Inc. • 4225 E. La Palma Avenue • Anaheim, CA 92807 USA
www.SechristUSA.com • info@SechristUSA.com